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LETTER TO THE EDITOR 

Partition function of a finite Ising model on a torus 

T Morita 
Department of Engineering Science, Faculty of Engineering, Tohoku University, Sendai 
980, Japan 

Received 17 June 1986 

Abstract. The detailed proof presented in an earlier paper, justifying Vdovichenko’s method 
which gives an exact expression of the free energy of the king model in a plane, is extended 
to the system on a torus. This justifies the exact expression of the free energy in the form 
given by Vdovichenko for the Ising model on the general two-dimensional lattice in the 
thermodynamic limit. 

A number of authors (Vaks et a1 1966, Bryksin er a1 1980, Kitatani et a1 1985, Morita 
1986b) applied the exact expression of the free energy of the Ising model in the form 
given by Vdovichenko (1969 ,  for various systems on two-dimensional lattices. In 
examining Vdovichenko’s derivation of the free energy, Morita ( 1986a) found difficulty 
in obtaining the final result for the general two-dimensional lattice because the exact 
partition function was obtained for a system in a plane but not on a torus. That paper 
will be referred to as I in the following. For the finite system on a square lattice on 
a torus, an  exact expression of the partition function was given by Kaufman (1949). 
Potts and  Ward (1955) were able to express it in terms of four determinants of large 
matrices. The purpose of the present letter is to extend the derivation given in I to 
give the exact partition function of the Ising model on the general two-dimensional 
lattice on a torus. 

We start with the following expression of the partition function for the finite Ising 
model on a two-dimensional lattice of N lattice sites: 

where 

Z , (  r )  = [ 1 +{the sum of all those single-bonded diagrams on the lattice, that each 
lattice site is connected to none or an  even number of bonds 
connecting nearest-neighbour sites}]. (2)  

Here the product in the second factor on the right-hand side of (1) is over all the pairs 
of nearest-neighbour lattice sites on the lattice and P = l/k,T, k B  is the Boltzmann 
constant and  T is the temperature. A diagram here represents the product of factors 
for the bonds; the factor is tanh(PJk)r for the bond connecting j t h  and  kth lattice 
sites, where Jik is the exchange integral between these lattice sites. Here t is a parameter 
introduced for the convenience of the proof. 

We can rewrite Z , ( t )  as a sum of products of non-crossing loops as in I. The 
diagrams are now on a lattice on the torus. A loop may wind the torus. In order to 
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distinguish two directions of winding, we call them the x and y direction, respectively. 
We call a loop with a net rotation in either direction a winding loop. We shall call a 
loop winding odd times in the x direction and no or even times in the y direction an 
o-e winding loop, a loop winding odd times in the y direction and no or even times 
in the x direction an e-o winding loop and a loop winding odd times both in the x 
and y direction an 0-0 winding loop. Otherwise, a winding loop is called an e-e 
winding loop, which always involves a crossing and does not appear in Z,( t ) .  

In the present letter, we assume that a diagram represents the product of loops, 
divided by the symmetry number of the diagram as a whole, and a loop represents the 
product of the following four factors: 

(i) -1, if the total number of crossings within the loop is odd; 
( i i )  the product n,,,[tanh(PJlk)fImil, where mjk is the total number of times that 

(iii) the inverse of the symmetry number of the loop; 
(iv) -1, if the loop is an o-e, e-o or 0-0 winding loop. 
Z,( t )  is now expressed as 

the bond between the j th  site and the kth site is passed along the loop; 

ZI(t)  = ~ 0 0 - ~ , 0 - ~ 0 1  -E , ,  (3) 

where Z lo ,  Zol and Z,, are the sums of the diagrams in which there are an odd number 
of o-e winding loops, an odd number of e-o winding loops and an odd number of 
0-0 winding loops, respectively, and Zoo is the sum of the remaining diagrams in Z,( t ) .  
The minus signs in front of the last three terms in (3 )  are due to (iv). We now consider 
the following quantity: 

~ 0 0 ~ ~ ~ = ~ 0 0 + ~ 1 0 + ~ 0 , + ~ , 1 .  (4) 

We shall see that if the quantity which is expressed by det(1- A) in I is calculated for 
a system on a torus, it is equal to Zoo(l)2, but not to Z,(l)*. 

We first show that Zoo( f )  is equal to 2,( t )  which is defined by 

Z,( 1 )  = exp{the sum of all the loops on the torus}. ( 5 )  

We follow the arguments in 0 2 of I. We expand the exponential in (5). All the 
diagrams involved in Zoo(t) given by (4) appear in the expansion. The arguments to 
show the cancellation of all the other diagrams in the expansion proceed as in I .  

Two diagrams to be cancelled with each other are different only in the way of 
connection at one site and have numbers of crossings which are different by one. If 
the total numbers of loops in the two diagrams are equal with each other, we only 
have a change of factor -1 due to (i), resulting in the cancellation. If the change of 
the connection reduces a loop in one of the diagrams into two loops in the other, 
firstly we have -1 due to ( i )  as in the above case, and secondly the change of the sign 
factors due to (iv) as given in table 1. We observe that the total number of crossings 
between the two loops in the latter diagram is odd if these two loops are o-e and e-o, 
or o-e and 0-0, or e-o and 0-0 winding loops, and it is even otherwise; see the 
appendix for an argument to show this fact. If this number is odd, we have an additional 
factor -1, since the factor -1 is associated with these crossings within a loop before 
the change, because of (i), but no sign factor is associated with the crossings between 
two separate loops after the change. Thus we conclude the cancellation for all the 
cases, obtaining 

Z o o ( t )  = ZAt). ( 6 )  
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Table 1. Comparison of the sign factors due to (iv), for two diagrams of a loop and of 
two loops, to be cancelled with each other. Here 0-0, o-e and e-o denote an 0-0, o-e 
and e-o winding loop, respectively, and e-e represents an e-e winding as well as a 
non-winding loop. 

Difference in the 
factors due to ( i v j  Type of a loop Types of two loops 

0-0 0-0 e-e 1 
0-0 o-e e-o - 1  
o-e 0-0 e-o -1 
o-e o-e e-e 1 
e-e 0-0 0-0 (-1j2 
e-e o-e o-e (--I)* 
e-e e-e e-e 1 

We next consider the directed loops, rewriting ( 5 )  as follows: 

Z,( t)' = exp{the sum of all the directed loops on the torus}. ( 7 )  
We compare the exponent of (7) with ( l / n )  Tr A"t", where A is the matrix which 
induces the random walks on the torus. We use i and i '  to label a step of a random 
walk, discriminating between the nearest-neighbour pair of sites as well as the direction. 
The (i, i') element of A is 

a . .  1 . 1 , -  - x . p . f )  I I 1.1 ., (8 )  
if step i can follow i' and 14,.i,l< 7~ and ai , ip=O otherwise, where 4i,l! is the angle of 
direction of step i relative to the direction of i' and \4;,;,1S 7~ and e , , , .=e~p( i4~ , , . / 2 ) .  
x ,  = tanh(PJ,,) if the step i is between the lattice sites j and k. In this case, p i  = 1 for 
all i. 

All the loops on the torus appear in both members to be compared. We first 
consider the case that the sum of 4i,is is zero. We then have a winding loop. If it is 
o-e, e-o or 0-0, we have an even number of crossings and if it is e-e, an odd number 
of crossings. (i) and (iv) give a factor -1 for all these cases. This factor -1 does not 
appear in A". In the case of a non-winding loop without crossing, we have a factor 
1 in (i) and (iv), but -1 in A" due to the product of c9i,i.. In every addition of a 
crossing, we have a factor -1 due to (i), which is taken into account in the product 
of O , , ,  in A". Thus they have different signs for all the loops. Hence we have 

= det(1 - A t ) .  ( 9 )  

See I for the roles played by the parameter t in obtaining (9). 
The remaining argument is the same as in Potts and Ward (1955). We change the 

sign of the interactions in a row or in a column or in both, defining Zlo( t ) ,  Zol( t )  and 
ZI,(t) by 

ZIO(t) = ~ o o - ~ l o + ~ o , - ~ l l  

~ o l ( t )  = ~ o o + ~ l o - ~ o l - ~ l ,  

z1 I (  t )  = L J o  - El0 - xo, + XI 1 . 



L1194 Letter to the Editor 

Now comparing ( 3 )  with (4) and ( lo) ,  we express Z,( 1 )  as follows: 

21 ( 1 )  = f[ - Zoo(  0 + G o (  t )  + zo, ( t )  + z, I ( !)I. (11) 

We define A,,,, for (T = 0, 1 and ( T I  = 0, 1 by choosing p ,  = ( - 1)" if i is a step on 
the column for which the sign of interaction is changed, p ,  = ( -  1)" if i is a step on 
the row for which the sign of interaction is changed and  pt = 1 for all other steps i. 
Then Aoo = A and 

Z,,,, ( t ) ' =  de t ( I  -A,, t ) .  (12) 

For a finite Ising model on the general two-dimensional lattice on the torus, we 
obtain the partition function expressed by (1) with (11) and  (12). 

We shall now consider a translationally symmetric system of N'  = K x L unit cells 
on a torus. A unit cell is labelled by ( k ,  I )  where k = 1 , 2 , .  . . , K and I = 1,2,  . . . , L, 
and unit cells ( k  + 1, I )  and ( k ,  I +  1) are derived from the unit cell ( k ,  I )  in the x and 
y direction, respectively, where K + 1 and L +  1 are identified with 1. When there are 
M pairs of nearest-neighbour lattice sites on the lattice, there are 2 M / N '  kinds of 
steps of random walks, for a unit cell. We shall label them by p and U, where 
p, v = 1 , 2  , . . . ,  2 M / N ' .  

We note here that there exist various choices of p,O,,, , provided that the product 
of plOl,l along any loop is not changed (Bryksin er a1 1980). For instance, for the 
calculation of det( I - A,,, ), we can choose p ,  for every step i, not only for a step on 
a row or a column, to be 

PI =exp[ id(Tt , /K +a'rt,/L)I (13 )  
where 5, and v, denote k " -  k and I " -  I ,  respectively, when step i is labelled by ( k ,  I, p )  
and is one from a site in the unit cell ( k ,  I )  to a site in a unit cell ( k " ,  I " ) .  Then A,, 
have the translational and rotational symmetry in the x and y directions and we can 
apply the arguments in 5 4 in I to express de t ( I  -A,, ) in terms of small determinants 
for a unit cell. In place of (22) in I, we have 

where 

f,,($, $7 = a,, -tanh(pJ,)O:, exp(i5,$+iqp$'). (15) 
Here J,  denotes the interaction of the two sites on both sides of a step labelled by 
( k ,  I ,  p). 0;. is equal to exp(i4,,,/2) i f  there exists a step which is labelled by ( k ' ,  I ' ,  v )  
and can just precede the step (k, I ,  p )  and 14pvl < T, where 4,+v is the angle of the step 
( k ,  I, p )  relative to the step ( k ' ,  I ' ,  U), e:, = 0 if otherwise. For a system on the square 
lattice, the expression (1) with (1 l ) ,  (12) and (14) is equivalent to the result of Kaufman 
(1949), and to the result of Potts and Ward (1955) above the critical temperature. 

Substituting (14) into (121, we observe that l n lZ , ,~ , ( l ) l  is estimated as 

1 1 
- In lzc,,,,(l) I = 7 In l zoo( l )  I + 0 ( 1 / K )  + O ( l / L ) .  " N (16) 

We denote the ratio of Zl( l )  and Zoo(l) by C, i.e. 

ZI(1) = Z"O(1)C. (17) 
Since ( 1 )  shows that Z,(1) is positive, C cannot be zero. By using (16) and (17) in 
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(1 l ) ,  we obtain 

1 - In1 C I = O( 1 / K )  + 0 ( 1 /  L ) .  
N ’  

(18) 

As a result, we have 

(19) 
1 1 - In z,( 1) = 7 In I zoo( 1) I + O( I /  K ) + O( I /  L ) .  

N ’  N 

Substituting this into (1) and taking the limit as K +CC and L + w ,  we obtain 

1 -pf= lim -1nZ 
K - r  N 
L - x  

d$ /:7 d$’ In det( 7,,,($, 4’ ) )  (20) 
1 

= In 2 + - In J, + - 
2M P 8rr2M‘ 

where M‘ = N /  N ’  is the total number of lattice sites per unit cell. 
(20) is the result which we obtain when we simply apply the result of Vdovichenko’s 

method to a system on a torus and take the thermodynamic limit. We thus justify the 
use of of Vdovichenko’s result in the thermodynamic limit for the Ising model on the 
general two-dimensional lattice. 

Appendix. Parity of the number of crossings between two loops 

We consider two loops L and L’ on a torus. We denote the total numbers of windings 
in the x and y direction of the loops by m and n for L and by m’ and n’ for L’. We 
represent the torus by a rectangle of sides X and Y in the x and y direction, respectively, 
in the plane. We draw the loop L on the rectangle and its repetitions as shown in 
figure 1. We consider a point with coordinates (x, y )  which is on L‘, but not on L, and 

0 X 2 x  3 x  4 X  

Figure 1. Representation of loops L and L’ in the plane. L for m = 2 and n = 3 is shown 
by thin solid lines. i{ represents an L’ with m ‘ =  n ’  = 0, which is deformed to a tiny circle. 
i; represents another L’ with m ’ = 3  and n ’ =  1, which is deformed to the line via three 
crosses. 
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represent the loop L' by a trajectory i' from the point (x, y )  to the point (x + m'X,  y + 
n ' Y )  in the plane, as shown in figure 1. Each of the crossings between L and L' on 
the torus appears once and only once as a crossing of the trajectory i' with the lines 
for L in figure 1. 

We now note that the parity of the total number of crossings between two loops 
on a torus does not change if we change :he forms of the loops continuously. In fact, 
we observe that if we change the form of L' in the plane, without changing the terminal 
positions (x, y )  and (x  + m'X,  y + n' Y ) ,  the change of the total number of crossings 
with the lines for L is even. If m' = n' = 0 ,  then L' is non-winding and we can deform 
i' to a tiny circle near (x, y ) ,  reducing the total number of the crossings to zero, and 
hence the parity must be zero. If L' is a winding loop, we deform i' to the trajectory 
described by the coordinates r ( t )  for 0 s  t s m'+ n', where 

(X + rX, Y 1 O S t S m '  
m ' s t s m ' S n ' .  { ( x +  m'X,  y + ( t  - m ' ) Y )  

r ( t )  = 

At 0 < t < m', the trajectory traverses a distance m'X in the x direction, when the 
number of crossings in every distance X is equal to n or different from n by an even 
number. Hence the parity of the number of the crossings in this part of the trajectory 
is equal to the parity of the product m'n. At m'< t < m'+ n', the trajectory traverses 
a distance n ' Y  in the y direction and the parity of the total number of the crossings 
in this part is equal to that of n'm. By summing these, we obtain the result that the 
parity of the number of the crossings between the two loops L and L' on a torus is 
equal to the parity of the sum m'n + n'm. Thus the parity is odd if the two loops are 
o-e and e-o, o-e and 0-0, or e-o and 0-0 winding loops. It is even if otherwise. 

The author is indebted to Professor Masuo Suzuki and Dr Makoto Inoue of Tokyo 
University for many useful discussions and suggestions and for showing their manu- 
script of a related work on the dimer problem before publication. 
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